Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Res ; 28(1): 71, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36755351

RESUMEN

BACKGROUND: Airway remodeling is an important pathological feature of chronic airway diseases, which leads to a progressive decline in lung function. The present study examined the anti-remodeling and anti- inflammatory effect of BIBF1000, a triple-tyrosine kinase inhibitor that targets VEGF, PDGF, and FGF receptor signaling in a mouse model of repeated ovalbumin (OVA) challenges. METHODS: Female Balb-c mice were immunized intraperitoneally on days 0 and 12 with 50 µg ovalbumin plus 1 mg of Al(OH)3 in 200 µl saline. Intranasal OVA challenges (20 µg/50 µl in PBS) were administered on days 26, 29, and 31, and were repeated twice a week for 3 months. Animals received vehicle or BIBF1000 (25 mg/kg, b.i.d.) through gavage from day 26 to the end of fourth month. On day 120, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immunohistological analysis. RESULTS: Compared to vehicle controls, treatment with BIBF1000 reduced the numbers of BAL eosinophils, macrophages, neutrophils, and lymphocytes by 70.0%, 57.9%, 47.5%, and 63.0%, respectively, and reduced IL-5 and IL-13 in BAL. Treatment with BIBF1000 reduced airway mucus secretion, peribronchial fibrosis, small airway, and pulmonary arterial wall thickness, compared to vehicle controls. Furthermore, treatment with BIBF1000 also reduced the expression of inflammatory mediators (TNF-α, IL-1ß, IL-5, IL-13, MMP-2, MMP-9, COX-2, and iNOS) and inhibited ERK and AKT phosphorylation. CONCLUSIONS: The protective effect afforded by triple-tyrosine kinase inhibition with BIBF1000 in reducing allergen-induced airway and arterial remodeling was associated with down-regulation of inflammatory mediators, as well as inhibition of ERK and AKT signaling pathways.


Asunto(s)
Alérgenos , Interleucina-13 , Remodelación Vascular , Animales , Femenino , Ratones , Alérgenos/farmacología , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Pulmón/patología , Ratones Endogámicos BALB C , Ovalbúmina , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , /farmacología
2.
J Transl Med ; 20(1): 590, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514072

RESUMEN

BACKGROUND AND AIMS: Kinin B1 receptors (B1Rs) are implicated in the pathogenesis of fibrosis. This study examined the anti-fibrotic effects of B1R blockade with BI 113823 in two established mouse models of hepatic fibrosis induced by intraperitoneal carbon tetrachloride (CCl4) injection or bile duct ligation (BDL). The mechanisms underlying the protection afforded by B1R inhibition were examined using human peripheral blood cells and LX2 human hepatic stellate cells (HSCs). METHODS: Fibrotic liver diseases were induced in mice by intraperitoneal carbon tetrachloride (CCl4) injection for 6 weeks, and by bile duct ligation (BDL) for 3 weeks, respectively. Mice received daily treatment of vehicle or BI 113823 (B1R antagonist) from onset of the experiment until the end of the study. RESULTS: B1Rs were strongly induced in fibrotic mouse liver. BI 113823 significantly attenuated liver fibrosis and portal hypertension (PH), and improved survival in both CCl4 and BDL mice. BI 113823 significantly reduced the expression of fibrotic proteins α-SMA, collagens 1, 3, 4, and profibrotic growth factors PDGF, TGFß, CTGF, VEGF, proliferating cell nuclear antigen; and reduced hepatic Akt phosphorylation in CCl4- and BDL-induced liver fibrosis. BI 113823 also reduced expression of Cytokines IL-1, IL-6; chemokines MCP-1, MCP-3 and infiltration of inflammatory cells; and inhibited human monocyte and neutrophil activation, transmigration, TNF-α & MPO production in vitro. BI 113823 inhibited TGF-ß and B1R agonist-stimulated human-HSC activation, contraction, proliferation, migration and fibrosis protein expression, and inhibited activation of PI3K/Akt signalling pathway. CONCLUSIONS: B1Rs merits consideration as a novel therapeutic target for chronic liver fibrosis and PH.


Asunto(s)
Hipertensión Portal , Cirrosis Hepática , Receptores de Péptidos , Animales , Humanos , Ratones , Tetracloruro de Carbono , Fibrosis , Células Estrelladas Hepáticas , Hipertensión Portal/complicaciones , Hipertensión Portal/tratamiento farmacológico , Hipertensión Portal/metabolismo , Cininas/metabolismo , Cininas/farmacología , Cininas/uso terapéutico , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Péptidos/antagonistas & inhibidores
3.
Respir Res ; 22(1): 281, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717626

RESUMEN

BACKGROUND: This study examined whether BI113823, a novel selective kinin B1 receptor antagonist can reverse established pulmonary arterial hypertension (PAH), prevent right heart failure and death, which is critical for clinical translation. METHODS: Left pneumonectomized male Wistar rats were injected with monocrotaline to induce PAH. Three weeks later, when PAH was well established, the rats received daily treatment of BI113823 or vehicle for 3 weeks. RESULTS: Treatment with BI113823 from day 21 to day 42 after monocrotaline injection reversed established PAH as shown by normalized values of mean pulmonary arterial pressure (mPAP). BI113823 therapy reversed pulmonary vascular remodeling, pulmonary arterial neointimal formation, and heart and lung fibrosis, reduced right ventricular pressure, right heart hypertrophy, improved cardiac output, and prevented right heart failure and death. Treatment with BI113823 reduced TNF-α and IL-1ß, and macrophages recruitment in bronchoalveolar lavage, reduced CD-68 positive macrophages and expression of proliferating cell nuclear antigen (PCNA) in the perivascular areas, and reduced expression of iNOS, B1 receptors, matrix metalloproteinase (MMP)-2 and MMP-9 proteins, and the phosphorylation of ERK1/2 and AKT in lung. Treatment with BI113823 reduced mRNA expression of ANP, BNP, ßMHC, CGTF, collange-I and IV in right heart, compared to vehicle treated controls. In human monocytes cultures, BI113823 reduced LPS-induced TNF-α production, MMP-2 and MMP-9 expression, and reduced TNF-α-induced monocyte migration. CONCLUSIONS: We conclude that BI113823 reverses preexisting severe experimental pulmonary hypertension via inhibition of macrophage infiltration, cytokine production, as well as down regulation of matrix metalloproteinase proteins.


Asunto(s)
Cininas/antagonistas & inhibidores , Neointima/patología , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/patología , Túnica Íntima/patología , Remodelación Vascular/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/efectos de los fármacos , Ratas , Ratas Wistar , Túnica Íntima/efectos de los fármacos
4.
J Transl Med ; 19(1): 340, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372885

RESUMEN

BACKGROUND: To examine the effects of BI 1029539 (GS-248), a novel selective human microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor, in experimental models of acute lung injury (ALI) and sepsis in transgenic mice constitutively expressing the mPGES1 (Ptges) humanized allele. METHODS: Series 1: Lipopolysaccharide (LPS)-induced ALI. Mice were randomized to receive vehicle, BI 1029539, or celecoxib. Series 2: Cecal ligation and puncture-induced sepsis. Mice were randomized to receive vehicle or BI 1029539. RESULTS: Series 1: BI 1029539 or celecoxib reduced LPS-induced lung injury, with reduction in neutrophil influx, protein content, TNF-ɑ, IL-1ß and PGE2 levels in bronchoalveolar lavage (BAL), myeloperoxidase activity, expression of mPGES-1, cyclooxygenase (COX)-2 and intracellular adhesion molecule in lung tissue compared with vehicle-treated mice. Notably, prostacyclin (PGI2) BAL concentration was only lowered in celecoxib-treated mice. Series 2: BI 1029539 significantly reduced sepsis-induced BAL inflammatory cell recruitment, lung injury score and lung expression of mPGES-1 and inducible nitric oxide synthase. Treatment with BI 1029539 also significantly prolonged survival of mice with severe sepsis. Anti-inflammatory and anti-migratory effect of BI 1029539 was confirmed in peripheral blood leukocytes from healthy volunteers. CONCLUSIONS: BI 1029539 ameliorates leukocyte infiltration and lung injury resulting from both endotoxin-induced and sepsis-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Ciclooxigenasa 2/metabolismo , Dinoprostona , Modelos Animales de Enfermedad , Humanos , Pulmón/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II , Prostaglandina-E Sintasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Cell Commun Adhes ; 24(1): 19-32, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30182742

RESUMEN

The objective of this study was to synthesize and characterize novel polyurethane (PU)-nanofiber coated with l-arginine by electrospinning technique. This study determined whether l-arginine conjugated with PU-nanofiber could stimulate cell proliferation and prevent H2O2-induced cell death in satellite cells co-cultured with fibroblasts isolated from Hanwoo (Korean native cattle). Our results showed that l-arginine conjugated with PU nanofiber could reduce cytotoxicity of co-cultured satellite cells. Protein expression levels of bcl-2 were significantly upregulated whereas those of caspase-3 and caspase-7 were significantly downregulated in co-culture of satellite cells compared to those of monoculture cells after treatment with PU-nanofiber coated with l-arginine and which confirmed by Confocal microscope. These results suggest that co-culture of satellite cells with fibroblasts might be able to counter oxidative stress through translocation/penetration of antioxidant, collagen, and molecules secreted to satellite cells. Therefore, this nanofiber might be useful as a wound dressing in animals to counter oxidative stresses.


Asunto(s)
Arginina/farmacología , Fibroblastos/citología , Nanofibras/química , Nanotecnología/métodos , Estrés Oxidativo/efectos de los fármacos , Células Satélite del Músculo Esquelético/citología , Animales , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/química , Caspasa 3/metabolismo , Bovinos , Membrana Celular/metabolismo , Forma de la Célula/efectos de los fármacos , Técnicas de Cocultivo , Ensayo Cometa , Activación Enzimática , Depuradores de Radicales Libres/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanofibras/ultraestructura , Necrosis , Picratos/química , Poliuretanos/química , Especies Reactivas de Oxígeno/metabolismo , Coloración y Etiquetado
6.
In Vitro Cell Dev Biol Anim ; 53(7): 632-645, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28462492

RESUMEN

The present study evaluates in vitro cytotoxic effects and the mode of interaction of biologically synthesized Ag and Au nanoparticles (NPs) using Brassica oleracea L. var. capitata f. rubra (BOL) against HT-1080 cancer cells and bacterial cells as well as their wound healing efficacy using a mouse model. UV-visible spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis have ascertained the formation of nano-sized Ag and Au particles. Fourier transform infrared analysis has confirmed that polyphenol and amide groups in BOL act as capping as well as reducing agents. The free radical scavenging activity under in vitro conditions is found to be higher for the Ag NPs when compared to the Au NPs. Acridine orange-ethidium bromide dual staining and comet assay have indicated that the cytotoxic effects are mediated through nuclear morphological changes and DNA damage. The intracellular localization of Ag and Au NPs in HT-1080 cells and their subsequent effect on apoptosis and necrosis were analyzed by flow cytometry while the mode of interaction was established by scanning electron microscopy under field emission mode and by bio-transmission electron microscopy. These methods of analysis clearly revealed that the Ag and Au NPs have easily entered and accumulated into the cytosol and nucleus, resulting in activation of inflammatory and apoptosis pathways, which in turn cause damage in DNA. Further, mRNA and protein expression of caspase-3 and caspase-7, TNF-α, and NF-κB have provided sufficient clues for induction of intrinsic and extrinsic apoptosis and inflammatory pathways in Ag NP- and Au NP-treated cells. Evaluation of wound healing properties of Ag and Au NPs using a mouse model indicates rapid healing of wounds. In addition, no clear toxic effects and no nuclear abnormalities in peripheral blood cells are observed. Ag NPs appear to be a better anticancer therapeutic agent than Au NPs. Nonetheless, both Ag NPs and Au NPs show potential for promoting topical wound healing without any toxic effects. Graphical abstract Schematic representation of biological synthesis of Ag and Au NPs and its application on cancer and wound healing.


Asunto(s)
Oro/farmacología , Nanopartículas del Metal/química , Neoplasias/patología , Plata/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Forma de la Célula/efectos de los fármacos , Ensayo Cometa , Inflamación/patología , Masculino , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/ultraestructura , Ratones Endogámicos ICR , Pruebas de Micronúcleos , Necrosis , Piel/efectos de los fármacos , Piel/patología , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...